
Learning Clusters through Information Diffusion
Liudmila Prokhorenkova
Moscow Institute of Physics

and Technology
Yandex

Moscow, Russia
ostroumova-la@yandex.ru

Alexey Tikhonov
Yandex

Berlin, Germany
altsoph@gmail.com

Nelly Litvak
University of Twente

Eindhoven University of Technology
Enschede, The Netherlands

n.litvak@utwente.nl

ABSTRACT

When information or infectious diseases spread over a network, in
many practical cases, one can observe when nodes adopt informa-
tion or become infected, but the underlying network is hidden. In
this paper, we analyze the problem of finding communities of highly
interconnected nodes, given only the infection times of nodes. We
propose, analyze, and empirically compare several algorithms for
this task. The most stable performance, that improves the current
state-of-the-art, is obtained by our proposed heuristic approaches,
that are agnostic to a particular graph structure and epidemic model.

KEYWORDS

Community detection; information propagation; information cas-
cades; network inference; likelihood optimization
ACM Reference Format:

Liudmila Prokhorenkova, Alexey Tikhonov, andNelly Litvak. 2019. Learning
Clusters through Information Diffusion. In Proceedings of the 2019 World
Wide Web Conference (WWW ’19), May 13–17, 2019, San Francisco, CA, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3308558.3313560

1 INTRODUCTION

Diffusion processes in networks include spreading of infectious
diseases [14], spread of computer viruses [36], promotion of prod-
ucts via viral marketing [16], propagation of information [31], etc.
In many practical scenarios one can observe when nodes become
infected but the underlying network is hidden. For instance, during
an epidemic, a person becomes ill but cannot tell who infected her;
in viral marketing, we observe when customers buy products but
not who influenced their decisions; in Twitter, for each retweet
only information about the root node of the cascade is available.
The problem of hidden network inference received a lot of atten-
tion recently [7, 27, 29, 30]. While these papers aim to recover the
actual network connections, in many applications only some global
properties of the underlying network are important. For example,
in viral marketing, one may wish to find the most influential users,
while for recommendation systems one may look for groups of
users with similar preferences.

In this paper, we analyze the problem, which recently attracted
interest in the literature [5, 26], of inferring community structure
of a given network based solely on cascades (e.g., information or

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313560

epidemic) propagating through this network. Communities are
groups of highly interconnected nodes with relatively few edges
joining nodes of different groups [9], such as groups by interests in
social networks or pages on related topics on the Web. Discovering
communities is one of most prominent tasks in network analysis.
Compared to the traditional community detection, our work is quite
different, because we do not have the network available to us, we
have only cascade data observed on this network. For each cascade,
we observe only infected nodes and their infection timestamps.

We propose and analyze several algorithms to solve this problem
and compare them to the state-of-the-art. The contributions of this
paper are the following. First, we give a systematic treatment to the
new problem of inferring community structure based on cascade
data, as stated formally in Section 3. Second, we propose two types
of approaches for this task: based on likelihood maximization under
specific model assumptions, and based on clustering of a surrogate
network (Section 4). Third, we conduct extensive experiments on a
variety of real-world networks (see Section 5). We conclude that
the most stable performance is obtained by our proposed heuris-
tics that are agnostic to a particular graph structure and epidemic
model. These heuristics work equally well on different networks,
for epidemics of different types.

2 RELATEDWORK

2.1 Network Inference from Cascades

A series of recent papers addressed the following task: by observ-
ing infection (activation) times of nodes in several cascades, infer
the edges of the underlying network. NetInf algorithm developed
in [11] is based on the maximization of the likelihood of the ob-
served cascades, based on a specific epidemic model. To make opti-
mization feasible, for each cascade NetInf considers only the most
likely propagation tree. This was later improved byMultiTree [30]
that includes all directed trees in the optimization and has better
performance if the number of cascades is small. NetRate algo-
rithm [28] infers not only edges, but also infection rates. NetRate
builds on an epidemic model that is more tractable for theoretical
analysis (we describe this model in Section 3.2). For this model the
likelihood optimization problem turns out to be convex. ConNIe
algorithm [21] also uses convex optimization, with the goal to infer
transmission probabilities for all edges. In [13, 29], it is additionally
assumed that the underlying network is not static and the proposed
algorithm InfoPath provides on-line estimates of the structure and
temporal dynamics of the hidden network. KernelCascade [8]
also extends NetRate, here the authors avoid assumptions about
a particular parametric form of the influence function. The DANI
algorithm [27] is interesting because it explicitly accounts for the

3151

https://doi.org/10.1145/3308558.3313560
https://doi.org/10.1145/3308558.3313560

community structure to enhance the inference of networks’ edges.
There are some other network inference algorithms not covered
here, see, e.g., [7, 12, 22, 32, 34, 35, 37, 38, 40].

2.2 Community Inference from Cascades

To the best of our knowledge, the paper [4] extended in [5] for
the first time addressed the problem of community detection given
cascades. In [4, 5], the cascade model includes influence of individ-
ual nodes, and a membership level of a node in each community
is inferred using the maximum likelihood approach. The authors
propose two algorithms: C-IC takes into account only participation
of a node in a cascade; C-Rate includes the time stamps, but limits
the node’s influence by its own community. Recently, [26] proposed
an alternative maximum likelihood approach, which exploits the
Markov property of the cascades. As an input, similarity scores of
node pairs are computed, based on their joint participation in cas-
cades. The R-CoDi algorithm in [26] starts with a random partition,
while D-CoDi starts with a partition obtained by DANI [27]. We
use all four mentioned algorithms as our baselines.

3 PROBLEM SETUP

3.1 General Setup

Cascades. We observe a set of cascades C = {C1, . . . ,Cr } that
propagate on a latent undirected network G = (V ,E) with |V | = n
nodes and |E | =m edges. Each cascadeC ∈ C is a record of observed
node activation times, i.e., C = {(vi , tCvi)}

nC
i=1, where vi is a node,

tCvi is its activation time in C , |C | = nC is a size of a cascade. Note
that we do not observe who infected whom.

Communities. We assume thatG is partitioned into communities:
A = {A1, . . . ,Ak }, ∪ki=1Ai = V , Ai ∩ Aj = ∅ for i , j. We expect
to observe a high intra-community density of edges compared to
inter-community density. In our experiments, the ground truth
partitions A are available for all datasets (see Section 5.1.1). By
observing only a set of cascades C we want to find a partition A ′
similar to A.

3.2 Cascade Models

3.2.1 SIR model. The main model for our experiments is a well-
known SIR (Susceptible-Infected-Recovered) model [15]. Each node
in the network can be in one of the three states: susceptible, infected,
or recovered. An infected node infects its susceptible neighbors with
rate α , the infection is spread simultaneously and independently
along all edges. An infected node recovers with rate β and then stops
spreading infection in the network. For each cascadeC we sample its
own infection rate αC from the Lomax (shifted Pareto) distribution
in order to model a variety of cascades: there can be minor or
widely circulated news, small scale epidemics or pandemics, etc.
The source node of a cascade is chosen uniformly at random.

3.2.2 SI model with bounded duration (SI-BD). In some cases, SIR
model might not be tractable for theoretical analysis, so we assume
a simpler diffusion model introduced in [28]. In this model, again,
an activated node infects its neighbors after an exponentially dis-
tributed time with intensity α , but there is no recovery rate. Instead,
all nodes recover simultaneously at some threshold time Tmax and

the epidemic stops. For simplicity we further assume Tmax to be
fixed, but our methods allow varying Tmax for different epidemics.

3.2.3 Community-based SI-BD model (C-SI-BD). Another model
which allows for a simpler theoretical analysis is based on the set-
ting from [33]. It is assumed that the spreading does not occur over
the edges of a graph G but depends solely on the community struc-
tureA. As before, the first node of a cascade is chosen uniformly at
random. Each activated node can infect all other susceptible nodes
independently after an exponentially distributed time. If a suscepti-
ble node belongs to the same community, then the infection rate is
αin , otherwise it is αout , αout < αin . Epidemic stops at time Tmax .

4 ALGORITHMS

4.1 Background on Likelihood Maximization

Recall that tCi denotes the activation time for node i in cascade C;
we often omit the index C when the context is clear. Without loss
of generality, for the first node of a cascade, we set ti = 0. Finally, if
a node i is not infected during an epidemic, then we set ti = Tmax .

Denote ∆Ci, j = ∆i, j = |ti − tj |. The log-likelihood logL(C) of
the cascade C for SI-BD with varying infection rates (i infects a
susceptible neighbor j after an exponentially distributed time with
rate αi, j) is given in [28]. For our purposes, it is convenient to write
this expression as:

logL(C) = −
∑

i, j :i<j
αi, j∆i, j +

∑
i :ti ∈(0,Tmax)

log
∑

j :tj<ti
α j,i . (1)

The log-likelihood for all cascades is logL(C) =
∑
C ∈C logL(C).

We will next introduce two methods based on maximizing logL(C).

4.2 ClustOpt

Consider the C-SI-BD model described in Section 3.2.3. Denote
by a(i) the community assignment for a node i . Then C-SI-BD is
equivalent to the model used in [28] with αi, j = αin if a(i) = a(j)
and αi, j = αout otherwise. The log-likelihood in (1) becomes:

logL(C,A) = −(αin − αout)
∑

i, j :i<j,
a (i)=a (j)

∆i, j − αout
∑

i, j :i<j
∆i, j

+
∑

i :ti ∈(0,Tmax)

log
(
(αin − αout) |{j : tj < ti ,a(j) = a(i)}|

+αout |{j : tj < ti }|
)
. (2)

.
We propose the following algorithm to maximize (2).

ALGORITHM 1: ClustOpt
(1) Find initial partition Ainit ;
(2) Find α̂in , α̂out = arg maxαin,αout logL(C,Ainit);
(3) For fixed α̂in , α̂out find Â = arg maxA logL(C,A).

Let us now discuss how the steps (1)–(3) are implemented.
Step (1):We have noticed that a stable and fast approach is to start

from some initial reasonable partition and optimize over αin , αout
andA only once, thus avoiding iterations of the costly optimization

3152

steps (2) and (3). In the current paper we propose to start from
Cliqe(0) explained in Section 4.4.

Step (2): Without loss of generality, we set αin = (δ + 1)αout .
Substituting this into (2), we find optimal αout in terms of δ andA:

α̂out =

∑
C ∈C (|C | − 1)∑

C ∈C
(
δ
∑
i, j :a (i)=a (j) ∆

C
i, j +

∑
i, j ∆

C
i, j

) . (3)

Unfortunately, due to the summation of logarithms in (2), we cannot
find another simple analytical relation between the optimal values
of δ and αout . Hence, we resort to a numerical solution. Due to (3),
it is sufficient to numerically find only the optimal δ , this will give
us the optimal values for both αin and αout .

Step (3): We follow [25], where the Louvain algorithm [6] is
modified for optimizing a wide range of functions that depend on
community structure, besides the original modularity measure. We
adapt this algorithm for the likelihood given in (2) by computing
the gain in logL(C,A) obtained by moving a node v from one
community to another. In view of computational complexity, we
consider only moving single nodes from one community to another
and do not attempt to move groups of nodes or merge communities.

4.3 GraphOpt

In this section, we drop the assumption of fixed infection rates
within and between communities. Instead, we assume the SI-BD
cascade model defined in Section 3.2.2. Our task is much more
complex in this setting because now we have a hidden graph G.

We propose an expectation-maximization-based method, where
G is a latent variable. We assume the following generative proba-
bilistic process. For a given partition A of n nodes we construct
a graph G according to some model (distribution) P(G |A). Then,
based onG, we generate a set of cascades C according to another
model P(C|G). We observe C and our aim is to recover the partition
Ā which maximizes the likelihood, i.e., Ā = arg maxA P(C|A) .
Let us first explain how the standard expectation-maximization
(EM) approach applies to this problem:

(1) Choose some initial partition Â;
(2) Find the distribution P(G |C, Â);
(3) Update Â: Â = arg maxA EG log P(AG |C);
(4) Iterate (2)-(3) until convergence.
This algorithm cannot be applied directly because, as we ex-

plain below, steps (2) and (3) are computationally intractable. Our
algorithm GraphOpt is obtained by simplifying these two steps.

First, let us rewrite the distribution in (2):

P(G |C, Â) =
P(CGA)

P(C Â)
=

P(C|G, Â)P(G Â)

P(C|Â)P(Â)

=
P(C|G)P(G |Â)

P(C|Â)
∝ P(C|G)P(G |Â) , (4)

where we used that P(C|Â) does not depend onG and P(C|G, Â) =
P(C|G) since, given the graph, the division into communities does
not affect the cascades.

Now, we rewrite the probability in (3): P(AG |C) =
P(CG A)

P(C) =

P(C |G)P(G |A)P(A)
P(C) . Since we do not have any prior assumptions

forA, we assume that P(A) is constant. Also, P(C) and P(C|G) do

not depend on A, so

arg max
A

EG log P(AG |C) = arg max
A

EG log P(G |A) . (5)

From (4) and (5) we see the computational bottlenecks of the EM
algorithm. Indeed, even if for eachG we can estimate the probability
in (4), it is still impossible to even compute EG log P(G |A), because
the expectation is over all possible realizations of G. Clearly, we
cannot hope to maximize this expression over A. Therefore, we
simplify the procedure: instead of computing the entire probability
distribution over all graphs G in (4), we find only the most likely
graph Ĝ, with the idea that Ĝ gives the largest contribution to
EG log P(G |A). Then the optimization problem in (5) is solved only
for Ĝ. As a result, we obtain the following algorithm.

ALGORITHM 2: GraphOpt
(1) Choose some initial partition Â and graph Ĝ;
(2) Update Ĝ: Ĝ = arg maxG

(
log P(C|G) + log P(G |Â)

)
;

(3) Update Â: Â = arg maxA log P(Ĝ |A);
(4) Iterate (2)-(3) until convergence.

Let us describe how each step of Algorithm 2 is implemented.
Step (1): We start from a trivial partition Â in which each node

belongs to its own cluster. We also create an initial graph1 Ĝ =
(V ,E0) as follows: for each cascade C consider the path of |C | − 1
edges, where each edge connects two nodes that are subsequently
activated in this cascade; E0 is a union of such paths over allC ∈ C.

Step (2): P(G |Â) is defined by the ILFR model proposed in [25],
where the formula for log P(G |Â) is also provided. This model
was shown to give the best fit to a variety of real-world networks
in terms of likelihood. For P(C|G), we assume the SI-BD cascade
model, so we use (1) with αi, j = α if i and j are connected inG and
αi, j = 0 otherwise. Then log P(C|G) =

∑
C ∈C log P(C |G) with

log P(C |G) = −α
∑

(i, j)∈E (G)

∆i, j + (|C | − 1) logα

+
∑

i :ti ∈(0,Tmax)

log |{j : tj < ti , (i, j) ∈ E (G)}| . (6)

A nice feature of (6) is that for given C and G it is easy to compute
α that maximizes the overall likelihood:

αopt =

∑
C ∈C (|C | − 1)∑

C ∈C
∑

(i, j)∈E (G) ∆
C
i, j
. (7)

Finally, we need to find Ĝ = arg maxG
(
log P(G |Â) + log P(C|G)

)
.

We use a greedy approach to approximately find Ĝ: we iteratively
add and remove edges to increase log P(G |Â) + log P(C|G) (the
detailed description is omitted due to space constrains).

Step (3): This is a standard likelihood optimization task used in
community detection. We use the Louvain-based algorithm pro-
posed in [25].

1This initial graph is needed for step (2), since our update algorithm requires initial-
ization with non-zero likelihood.

3153

4.4 Clustering of Surrogate Graphs

In this section, we present simple yet effective methods that con-
struct a surrogate graph Ĝ and then cluster this graph (using the
Louvain algorithm [6]). It is crucial that Ĝ does not need to be sim-
ilar to G, it just needs to capture the community structure on an
aggregated level. Our experiments show that clustering of Ĝ often
performs better than first inferring G and then clustering it.

4.4.1 Path algorithm. Assume again that cascades C are generated
by the SI-BD model. Now, forC ∈ C letG ′ = G ′(C) be a graph with
exactly |C | − 1 edges that maximizes the probability P(C |G ′) in (6).
It is easy to check thatG ′ is merely a path connecting subsequently
activated nodes. Note that we have already used such paths to
initialize Algorithm 2. This leads to the following algorithm.

ALGORITHM 3: Path
(1) Construct weighted graph Ĝ, where the weight of each

edge e in Ĝ is the number of G ′(C) including e;2
(2) Find clusters in Ĝ using the Louvain algorithm.

4.4.2 Clique. Another approach is to include all possible edges
that could participate in the cascade weighing them by the proxy of
their likelihood. Then each cascade C results in a weighted clique
of size |C |. The weights can be chosen, for example, as follows.
For a cascade C and two nodes i, j let us consider the probability
PC (i, j) = P(j was infected from i |C). If ti > tj , then, obviously,
PC (i, j) = 0. If ti < tj , then, as in [11], we assume that PC (i, j)
decreases exponentially with ∆i, j ; namely, PC (i, j) = c j e

−a∆i, j ,

where c j is a constant depending on j. Since j was infected from
exactly one previous node, we must have

∑
i :ti<tj P

C (i, j) = 1.

Therefore, PC (i, j) = e−a∆i, j∑
l :tl <tj e

−a∆l, j
.

Cliqe constructs Ĝ as the weighted graph with weight of {i, j}
given by

∑
C ∈C (P

C (i, j) + PC (j, i)), which, under our assumptions,
is the expected number of times infections passed between i and j.
Note that we directly model PC (i, j) rather than making assump-
tions about infection times. Parameter a essentially balances be-
tween paths and cliques: if a is large, then we mostly take into
account subsequent nodes with small ∆i, j ; for small a all pairs of
nodes participated in C are important. To make Cliqe insensitive
to the speed of epidemics, we take a = 1

∆ , where ∆ is the average
time between infected times (we average over all pairs of infected
nodes belonging to the same cascade). We also consider Cliqe(0)
with a = 0, which is a natural choice for the SI-BD model because it
mimics the memory-less property of exponential infection times.3

ALGORITHM 4: Cliqe
(1) Construct Ĝ as the weighted graph with weight of {i, j}

given by
∑
C ∈C (P

C (i, j) + PC (j, i)).
(2) Find clusters in Ĝ using the Louvain algorithm.

2Weighting edges is important, since for large |C | unweighted union of edges can be
a complete graph, with no meaningful partition.
3We noticed that Cliqe is not too sensitive to varying a in a reasonable interval,
while for too large a Cliqe becomes very similar to Path.

4.5 Baselines

MultiTree uses the algorithm from [30] to find an inferred graph
Ĝ, which is then clustered by the Louvain algorithm [6].

Oracle algorithm can be considered as superior for all possible
network inference algorithms: we construct a graph Ĝ consisting of
all edges participated in cascades (assuming these edges are known,
hence, the name Oracle). The obtained graph Ĝ is clustered by the
Louvain algorithm.

Finally, we used algorithms proposed for solving the same prob-
lem as in our work: C-IC and C-Rate [5], as well as R-CoDi and
D-CoDi [26]. We use the publicly available implementations pro-
vided by the authors. For C-IC and C-Rate we use the real number
of communities as an input parameter.4

5 EXPERIMENTS

5.1 Experimental Setup

5.1.1 Networks. We used real-world datasets of different sizes and
nature, for which the ground truth partition of nodes into k non-
overlapping communities is available: Zachary’s karate club [39]
(n = 34, m = 78, k = 2), dolphin social network [20] (n = 62,
m = 159, k = 2), American college football [24] (n = 115,m = 613,
k = 11), books about politics [23] (n = 105,m = 441,k = 3), political
blogs [1] (n = 1224,m = 16715, k = 2), email-Eu-core dataset [19]
(n = 986,m = 16064, k = 42).

5.1.2 Metric. We evaluate the quality of the obtained communi-
ties compared to the ground truth using the Normalized Mutual
Information (NMI) similarity measure [2, 9]. Let V0 ⊂ V denote the
set of all nodes that participated in cascades. To compute NMI, we
assign all nodes in V \V0 to one cluster labeled “unknown”.

5.1.3 Cascades. We took the datasets with ground truth communi-
ties described in Section 5.1.1 and, in order to cover various possible
diffusion processes, we generated the cascades according to all mod-
els discussed in Section 3.2. Importantly, there are both edge-based
and community-based models.

W.l.o.g., we set β = 1 for the SIR model and Tmax = 1 for SI-BD
and C-SI-BD. We noticed that to get an informative set of cascades,
the parameters α , αin , αout , and the parameter of the Lomax distri-
bution used by SIR have to be different for different datasets. For
SIR and SI-BD we choose parameters so that the average size of a
cascade is 2; for C-SI-BD we take αin = 10αout and choose αout
such that the number of cascades consisting of one node is about
20%. We checked that the obtained distribution of cascade sizes
is similar to observed for real data [3, 10, 12, 17, 18]. Single-node
cascades were removed.

5.2 Results

We have run the algorithms on all datasets and varied the number
of cascades |C|. Figures 1 and 2 show the results obtained for SIR
and C-SI-BD models, respectively.5 All results are averaged over 5
samples of generated cascades C.

4Although there are modifications of these algorithms automatically choosing the
number of communities, these modifications often failed on our data.
5Due to space constraints, we omit plots for the SI-BD model since they lead to similar
conclusions.

3154

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

N
M

I

number of cascades

Karate

Path
Clique(0)

Clique
D-CoDi
R-CoDi
C-Rate

C-IC
ClustOpt

GraphOpt
MultiTree

Oracle

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 10 100 1000

N
M

I

number of cascades

Dolphins

Path
Clique(0)

Clique
D-CoDi
R-CoDi

ComRate
C-IC

ClustOpt
GraphOpt
MultiTree

Oracle

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 10 100

N
M

I

number of cascades

Football

Path
Clique(0)

Clique
D-CoDi
R-CoDi

ComRate
C-IC

ClustOpt
GraphOpt
MultiTree

Oracle

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100

N
M

I

number of cascades

Political books

Path
Clique(0)

Clique
D-CoDi
R-CoDi

ComRate
C-IC

ClustOpt
GraphOpt
MultiTree

Oracle

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 10 100 1000

N
M

I

number of cascades

Political blogs

Path
Clique(0)

Clique
D-CoDi
R-CoDi

ComRate
C-IC

ClustOpt
GraphOpt
MultiTree

Oracle

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100 1000

N
M

I

number of cascades

Eu-core

Path
Clique(0)

Clique
D-CoDi
R-CoDi

ComRate
C-IC

ClustOpt
GraphOpt
MultiTree

Oracle

Figure 1: Comparison of algorithms on real-world datasets, SIR cascades

Wenoticed that the results are quite different for different datasets
and cascades models. Nevertheless, the proposed Cliqe algorithm
has the most stable performance, implying that the corresponding
surrogate graph is able to capture the information about the com-
munity structure. Importantly, both Cliqe(0) and Cliqe work
equally well for all cascade models since they are not based on a
particular one, as discussed in Section 4.4.

Note that Path is usually worse than Cliqe as it uses less
information.

The baselines C-IC and C-Rate are very unstable and in many
cases they show the worst results. This is expected, since C-IC and
C-Rate are based on a specific community-based model. Indeed,

on C-SI-BD C-IC shows a reasonable performance in some cases,
especially on Political blogs. Note that C-IC is almost always better
than C-Rate (except for some cascade sizes on Karate with SIR
model). D-CoDi and R-CoDi are essentially based on clustering of
a surrogate graph, so their performance is stable for all epidemic
models. However, in all cases D-CoDi failed on cascades of small
sizes (we included only successful points). D-CoDi can be both
better and worse than R-CoDi. Having reasonable performance
in many cases, these two baselines may have unexpectedly bad
points: see, e.g., the large number of cascades on Political blogs and
Eu-Core with all epidemic models. MultiTree turns out to have

3155

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

N
M

I

number of cascades

Karate

Path
Clique(0)

Clique
D-CoDi
R-CoDi
C-Rate

C-IC
ClustOpt

GraphOpt
MultiTree

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

N
M

I

number of cascades

Dolphins

Path
Clique(0)

Clique
D-CoDi
R-CoDi

ComRate
C-IC

ClustOpt
GraphOpt
MultiTree

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

N
M

I

number of cascades

Football

Path
Clique(0)

Clique
D-CoDi
R-CoDi

ComRate
C-IC

ClustOpt
GraphOpt
MultiTree

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

N
M

I

number of cascades

Political books

Path
Clique(0)

Clique
D-CoDi
R-CoDi

ComRate
C-IC

ClustOpt
GraphOpt
MultiTree

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

N
M

I

number of cascades

Political blogs

Path
Clique(0)

Clique
D-CoDi
R-CoDi

ComRate
C-IC

ClustOpt
GraphOpt
MultiTree

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 10 100 1000

N
M

I

number of cascades

Eu-core

Path
Clique(0)

Clique
D-CoDi
R-CoDi

ComRate
C-IC

ClustOpt
GraphOpt
MultiTree

Figure 2: Comparison of algorithms on real-world datasets, C-SI-BD cascades

the most stable performance among the baselines but it is usually
beaten by Cliqe(0) and Cliqe.

GraphOpt shows an excellent performance, e.g., on Eu-core for
all types of epidemics, on Football for SIR cascades and for small
number of C-SI-BD cascades. However, in general its quality is
unstable, and it is also much slower than surrogate-based methods.

Oracle is considered only as an upper bound for all network
inference algorithms.6 If the number of cascades is large enough,
then Oracle essentially clusters the original graph. Interestingly,

6We do not plot Oracle for C-SI-BD, since in this model graph is not used by the
propagation processes and. In particular, for large |C | we may get a complete graph.

in many cases Oracle is beaten by the surrogate-graph-based al-
gorithms. This basically means that errors made by Louvain on
original graph can be reduced by clever weighting of edges provided
by the surrogate-graph-based algorithms.

To conclude, we propose using the universal Cliqe method for
the problem of community inference based on cascade data. This
algorithm is simple, efficient, and works well for all considered
cascade models.

ACKNOWLEDGMENTS

This study was funded by RFBR according to the research project
18-31-00207.

3156

REFERENCES

[1] Lada A Adamic and Natalie Glance. 2005. The political blogosphere and the 2004
US election: divided they blog. In Proceedings of the 3rd international workshop
on Link discovery. ACM, 36–43.

[2] James P Bagrow. 2008. Evaluating local community methods in networks. Journal
of Statistical Mechanics: Theory and Experiment 2008, 05 (2008), P05001.

[3] Eytan Bakshy, Jake M Hofman, Winter A Mason, and Duncan J Watts. 2011.
Identifying influencers on twitter. In Fourth ACM International Conference on
Web Seach and Data Mining (WSDM).

[4] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. 2013. Influence-based
network-oblivious community detection. In Data Mining (ICDM), 2013 IEEE 13th
International Conference on. IEEE, 955–960.

[5] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. 2017. Efficient methods
for influence-based network-oblivious community detection. ACM Transactions
on Intelligent Systems and Technology (TIST) 8, 2 (2017), 32.

[6] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[7] Hadi Daneshmand, Manuel Gomez-Rodriguez, Le Song, and Bernhard Schoelkopf.
2014. Estimating Diffusion Network Structures: Recovery Conditions, Sample
Complexity & Soft-thresholding Algorithm.. In ICML. 793–801.

[8] Nan Du, Le Song, Ming Yuan, and Alex J Smola. 2012. Learning networks of
heterogeneous influence. In Advances in Neural Information Processing Systems.
2780–2788.

[9] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3
(2010), 75–174.

[10] Wojciech Galuba, Karl Aberer, Dipanjan Chakraborty, Zoran Despotovic, and
Wolfgang Kellerer. 2010. Outtweeting the twitterers-predicting information
cascades in microblogs. WOSN 10 (2010), 3–11.

[11] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. 2010. Inferring
networks of diffusion and influence. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 1019–
1028.

[12] Manuel Gomez-Rodriguez, Jure Leskovec, and Bernhard Schölkopf. 2013. Model-
ing Information Propagation with Survival Theory.. In ICML. 666–674.

[13] Manuel Gomez Rodriguez, Jure Leskovec, and Bernhard Schölkopf. 2013. Struc-
ture and dynamics of information pathways in online media. In Proceedings of the
sixth ACM international conference on Web search and data mining. ACM, 23–32.

[14] Lars Hufnagel, Dirk Brockmann, and Theo Geisel. 2004. Forecast and control of
epidemics in a globalized world. Proceedings of the National Academy of Sciences
of the United States of America 101, 42 (2004), 15124–15129.

[15] Matt J Keeling and Ken TD Eames. 2005. Networks and epidemic models. Journal
of the Royal Society Interface 2, 4 (2005), 295–307.

[16] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of
influence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 137–146.

[17] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In Proceedings of the 19th international
conference on World wide web. AcM, 591–600.

[18] Kristina Lerman, Rumi Ghosh, and Tawan Surachawala. 2012. Social contagion:
An empirical study of information spread on Digg and Twitter follower graphs.
arXiv preprint arXiv:1202.3162 (2012).

[19] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:
Densification and shrinking diameters. ACM Transactions on Knowledge Discovery
from Data (TKDD) 1, 1 (2007), 2.

[20] David Lusseau, Karsten Schneider, Oliver J Boisseau, Patti Haase, Elisabeth
Slooten, and Steve M Dawson. 2003. The bottlenose dolphin community of

Doubtful Sound features a large proportion of long-lasting associations. Behav-
ioral Ecology and Sociobiology 54, 4 (2003), 396–405.

[21] Seth Myers and Jure Leskovec. 2010. On the convexity of latent social network
inference. In Advances in Neural Information Processing Systems. 1741–1749.

[22] Praneeth Netrapalli and Sujay Sanghavi. 2012. Learning the graph of epidemic
cascades. ACM SIGMETRICS Performance Evaluation Review 40, 1 (2012), 211–222.

[23] Mark EJ Newman. 2006. Modularity and community structure in networks.
Proceedings of the national academy of sciences 103, 23 (2006), 8577–8582.

[24] Mark EJ Newman and Michelle Girvan. 2004. Finding and evaluating community
structure in networks. Physical review E 69, 2 (2004), 026113.

[25] Liudmila Prokhorenkova and Alexey Tikhonov. 2019. Community detection
through likelihood optimization: in search of a sound model. Proceedings of the
2019 World Wide Web Conference (WWW ’19) (2019).

[26] Maryam Ramezani, Ali Khodadadi, and Hamid R Rabiee. 2018. Community
Detection UsingDiffusion Information. ACMTransactions on Knowledge Discovery
from Data (TKDD) 12, 2 (2018), 20.

[27] Maryam Ramezani, Hamid R Rabiee, Maryam Tahani, and Arezoo Rajabi. 2017.
DANI: A Fast Diffusion Aware Network Inference Algorithm. arXiv preprint
arXiv:1706.00941 (2017).

[28] Manuel Gomez Rodriguez, David Balduzzi, and Bernhard Schölkopf. 2011. Uncov-
ering the temporal dynamics of diffusion networks. arXiv preprint arXiv:1105.0697
(2011).

[29] Manuel Gomez Rodriguez, Jure Leskovec, David Balduzzi, and Bernhard
Schölkopf. 2014. Uncovering the structure and temporal dynamics of information
propagation. Network Science 2, 01 (2014), 26–65.

[30] Manuel Gomez Rodriguez and Bernhard Schölkopf. 2012. Submodular inference
of diffusion networks from multiple trees. arXiv preprint arXiv:1205.1671 (2012).

[31] Daniel M Romero, Brendan Meeder, and Jon Kleinberg. 2011. Differences in the
mechanics of information diffusion across topics: idioms, political hashtags, and
complex contagion on twitter. In Proceedings of the 20th international conference
on World wide web. ACM, 695–704.

[32] Kazumi Saito, Masahiro Kimura, Kouzou Ohara, and Hiroshi Motoda. 2009. Learn-
ing continuous-time information diffusion model for social behavioral data anal-
ysis. In Asian Conference on Machine Learning. Springer, 322–337.

[33] Jaron Sanders and Alexandre Proutière. 2017. Optimal Clustering Algorithms in
Block Markov Chains. arXiv preprint arXiv:1712.09232 (2017).

[34] Arlei Silva, Hérico Valiati, Sara Guimarães, and Wagner Meira Jr. 2011. From
individual behavior to influence networks: A case study on twitter. In Proc. of the
17th Brazilian Symposium on Multimedia, Hypermedia and Web.

[35] Tristan Mark Snowsill, Nick Fyson, Tijl De Bie, and Nello Cristianini. 2011.
Refining causality: who copied from whom?. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
466–474.

[36] Chenxi Wang, John C Knight, and Matthew C Elder. 2000. On computer viral
infection and the effect of immunization. In Computer Security Applications, 2000.
ACSAC’00. 16th Annual Conference. IEEE, 246–256.

[37] Liaoruo Wang, Stefano Ermon, and John E Hopcroft. 2012. Feature-enhanced
probabilistic models for diffusion network inference. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. Springer, 499–514.

[38] Shuang-Hong Yang and Hongyuan Zha. 2013. Mixture of mutually exciting
processes for viral diffusion. In International Conference on Machine Learning.
1–9.

[39] Wayne W Zachary. 1977. An information flow model for conflict and fission in
small groups. Journal of anthropological research 33, 4 (1977), 452–473.

[40] Ke Zhou, Hongyuan Zha, and Le Song. 2013. Learning Social Infectivity in Sparse
Low-rank Networks Using Multi-dimensional Hawkes Processes.. In AISTATS,
Vol. 13. 641–649.

3157

	Abstract
	1 Introduction
	2 Related Work
	2.1 Network Inference from Cascades
	2.2 Community Inference from Cascades

	3 Problem setup
	3.1 General Setup
	3.2 Cascade Models

	4 Algorithms
	4.1 Background on Likelihood Maximization
	4.2 ClustOpt
	4.3 GraphOpt
	4.4 Clustering of Surrogate Graphs
	4.5 Baselines

	5 Experiments
	5.1 Experimental Setup
	5.2 Results

	Acknowledgments
	References

